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Abstract. We introduce the Tor groups Tor
S◦
M

• (C[ΣM],C)• for a loopless matroid
M as a way to study the extra relations occurring in the linear ideal of the Feichtner–
Yuzvinski presentation of the Chow ring A•(M). This extends the definition of the

Chow ring of a matroid since Tor
S◦
M

0 (C[ΣM],C)• ∼= A•(M). We show that these Tor
groups fit into a long exact sequence arising from the matroidal flips of Adiprasito,
Huh, and Katz [1], extending the short exact sequence in the case of Chow rings.
Using this long exact sequence we give a recursive formula for the Hilbert series of
the Tor algebra of a uniform matroid.

1. Introduction

The Chow rings of matroids have drawn considerable attention in the past decade.
For a loopless matroid M, the Chow ring A•(M) acts like the cohomology ring of a
projective variety [1]. In particular, there is a well-defined intersection theory, and the
intersection numbers yield combinatorial data, such as the catenary data [11], of the
matroid. Whenever M is representable (say over C) as a hyperplane arrangement, the
Chow ring A•(M) is defined to be the Chow ring of a smooth projective variety. Namely,
one takes a wonderful compactification in the sense of de Concini–Processi [7]. In order
to extend the definition to the non-representable case, Feichtner and Yuzvisnky [10]
construct a different geometric model for a loopless matroid M, whether representable
or not. This model is the toric variety X(ΣM) (defined over C) associated to the
Bergman fan ΣM. Whenever M is representable, the Chow ring A•(ΣM) is isomorphic
to A•(M), so this defines A•(M) for all loopless matroids.

In this paper, we will both investigate finer algebraic structure in Feichtner and
Yuzvinsky’s construction of the Chow ring and consider the full cohomology ring of
X(ΣM), geometrically extending the Chow ring of the matroid. It is perhaps surprising
that these two directions, algebraic and geometric, are related. Precisely, they are both
answered by the Tor groups of the Stanley–Reisner ring of the matroid. This interplay
between the algebraic structure of the Feichtner–Yuzvinsky presentation of A•(M) and
the geometry of X(ΣM) is the main theme of the paper, and we obtain our main results
by passing between these algebraic and geometric perspectives.

One can view this approach as extending the perspective of Hochster’s Formula,
which computes the Tor groups of the Stanley–Reisner ring of a simplicial complex
(over the polynomial ring generated by its vertices) in terms the reduced homology of
the simplicial complex. In our case, we use the correspondence due to Matthias Franz
[13, 14] between the Tor groups of the Stanley–Reisner ring of a (smooth) simplicial
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fan and the cohomology of the toric variety associated to the fan. The cohomology of
a toric variety depends not only on the combinatorial type of the fan but also on its
embedding in an integral lattice; this is reflected in the ring we take Tor over, as well
as the algebra structure we place on the Stanley–Reisner ring.

Let us begin by defining the finer algebraic structure we consider in Feichtner and
Yuzvinsky’s construction of the Chow ring of a matroid. As this is the Chow ring of a
toric variety, it has an explicit presentation in terms of a Stanley–Reisner ring modulo
a linear ideal. Define the Stanley–Reisner ring1 of the fan ΣM to be

C[ΣM] =
C[xF : F is a proper, non-empty flat of M]

⟨xFxG : F and G are incomparable⟩.
Then

(1) A•(M) ∼=
C[ΣM]

⟨
∑

{F :i∈F} xF −
∑

{G:j∈G} xG⟩i,j∈M .

We are interested in the relations between the generators of this ideal and what
such relations tell us about M. By counting dimension, one expects the generators{∑

{F :i∈F} xF −
∑

{G:n∈G} xG

}n−1

i=1
of the ideal to not be C[ΣM]-regular for a general

matroid M on the ground set [n] = {1, . . . , n}. That is, there should be further
relations. Take for example the uniform matroid U3,5. There are 15 monomials of
degree 1 and 35 monomials of degree 2 in C[ΣU3,5 ], while there are 4 linearly inde-
pendent generators of the ideal of relations, each of degree 1. By Poincaré duality,
dimA0 (U3,5) = dimA2 (U3,5) = 1, so the dimension of the space of relations is at least
26. The following algebraic question naturally arises: For which matroids are the gen-
erators of the linear ideal in Equation (1) C[ΣM]-regular, and if this is not the case,
what combinatorial information about the matroid do these extra relations capture?

We measure these relations through Tor groups. For a matroid M on the ground set
[n], define the rings

SM = C[x1, . . . , xn] and S◦
M = C[x1 − xn, . . . , xn−1 − xn] ⊆ SM.

The map

SM −→ C[ΣM], xi 7−→
∑
i∈F

xF

endows C[ΣM] with the structure of an SM-algebra and, by precomposing with the
inclusion S◦

M ↪→ SM, an S
◦
M-algebra. The cokernel of the map S◦

M → C[ΣM] is precisely
A•(M) ∼= C[ΣM] ⊗S◦

M
C, where C is an S◦

M- and SM-algebra under the identification
C ∼= SM/⟨x1, . . . , xn⟩. Therefore the relations between generators in the linear ideal

defining the Chow ring is measured by Tor
S◦
M

• (C[ΣM],C)•, and the Chow ring itself is

Tor
S◦
M

0 (C[ΣM],C)•. This Tor algebra naturally carries a bigrading Tor
S◦
M

• (C[ΣM],C)• =⊕
s,tTor

S◦
M
t (C[ΣM],C)s. The grading t, or Tor degree, comes from the indexing of the

Tor functors, while the grading s, or Stanley–Reisner degree, is inherited from the
grading of C[ΣM] as a polynomial ring.

1This is isomorphic to the face ring or Stanley–Reisner ring, in the sense of Stanley [23, Chapter
2], of the order complex of the lattice of flats of M.
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On the geometric side, we study the cohomology of the toric varieties X(ΣM). In
contrast to the wonderful compactifications of hyperplane arrangement complements,
the varieties X(ΣM) are not complete, except when M is a boolean matroid. The co-
homology H•(X(ΣM);C) carries a Hodge–Deligne filtration, and the non-completeness
suggests there is non-zero cohomology outside of type (p, p). Therefore the Chow ring,
which is purely of type (p, p), does not see this cohomology. One goal is to compute
the cohomology ring H•(X(ΣM);C) in terms of the combinatorial structure of M.

This cohomology ring is also isomorphic to Tor
S◦
M

• (C[ΣM],C)•. The open, dense
torus TM acts upon the toric variety X(ΣM), and with this action, the equivarient
cohomology is H•

TM
(X(ΣM);C) ∼= C[ΣM] (see [4]), while H•

TM
(pt;C) ∼= S◦

M. The key
result, due to Franz [13], is that X (ΣM) is formal, in that as modules

H•(X(ΣM);C) ∼= H•(H•
TM

(X(ΣM);C)⊗S◦
M

∧
L),

where L = H>0
TM

(pt;C), and the right hand side is the cohomology of the Koszul

complex H•
TM

(X(ΣM);C) ⊗
∧• L. As

∧• L is a free resolution of C in the category of
S◦
M-modules,

H•(X(ΣM);C) ∼= Tor
S◦
M

• (C[ΣM],C)•.
Moreover, the Tor algebra remembers the mixed Hodge structure ofH•(X(ΣM);C) (see
[24] for details) and the product operation in the Tor algebra, induced by multiplication
in the Koszul complex, is precisely the cup product in cohomology [14].

One of the main geometric tools we use in studying Tor
S◦
M

• (C[ΣM],C)• are the ma-
troidal flips introduced in [1]. Each flip is a tropical modification of fans ΣM,P− ⇝
ΣM,P+ , and on toric varieties, this corresponds to blowing up X(ΣM,P−) along a subva-
riety and then removing some subvarieties. Together these matroidal flips interpolate
between the fans ΣM,∅ and ΣM.

Just as with the Bergman fan ΣM, each fan ΣM,P has an associated Stanley–Reisner
ring C[ΣM,P ] which is an SM- and S

◦
M-algebra. Therefore we can also consider the Tor

groups Tor
S◦
M

• (C[ΣM,P ],C)• and the Chow rings

A•(M,P) := A•(X(ΣM,P)) ∼= Tor
S◦
M

0 (C[ΣM,P ],C)• .
In [1, Theorem 6.18], the authors show matroidal flips induce a short exact sequence
of Chow rings2

0 → A•(M,P−) → A•(M,P+) → A>0(MZ , ∅)⊗ A•(MZ) → 0

where Z = P+ \ P−. By viewing the Tor groups as cohomology rings of the corre-
sponding toric varieties and matroidal flips as close to being a blow up, we show this
short exact sequence of Chow rings extends to a long exact sequence of Tor groups

involving Tor
S◦
M

• (C[ΣM,P− ],C)• and Tor
S◦
M

• (C[ΣM,P+ ],C)• (Theorem 5.7 and Corollary

6.3). From this exact sequence we deduce properties of Tor
S◦
M

• (C[ΣM],C)• from those

of Tor
S◦
M

• (C[ΣM,∅],C)•.

2In the language of [1], A• (M,P−) is the image of the pull-back homomorphism ΦZ , and

A>0(MZ , ∅)⊗A•(MZ) is the image of the Gysin homomorphisms ⊕rank(Z)−1
1 Ψp,q

Z .
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1.1. Main Results. The first of our two main results is a sharp vanishing theorem
for the Tor algebra based on the combinatorics of M.

Theorem 6.1. Let M be a loopless matroid of rank r on the ground set [n]. For

t > n− r or s > r − 1, Tor
S◦
M
t (C[ΣM ],C)s = 0.

Moreover in top degree

dimTor
S◦
M
n−r (C[ΣM ],C)r−1 = |nbc(M)| ≠ 0.

Here nbc(M) denotes the set of no-broken-circuit bases of M; the number |nbc(M)|
is also known as the Möbius invariant of M, denoted µ̃(M) ([2, pg. 241]).
As an immediate corollary, we characterize the loopless matroids M for which the

sequence
{∑

{F :i∈F} xF −
∑

{G:n∈G} xG

}n−1

i=1
is C[ΣM]-regular.

Corollary 1.1. The sequence
{∑

{F :i∈F} xF −
∑

{G:n∈G} xG

}n−1

i=1
is C[ΣM]-regular pre-

cisely when M is a boolean matroid.

As Tor
S◦
M

• (C[ΣM,P ],C)• is bigraded, there is a bigraded Hilbert series

Hilb(Tor
S◦
M

• (C[ΣM,P ],C)•) =
∑
i,j

dimTor
S◦
M
i (C[ΣM,P ],C)j x

iyj.

The second of our main results gives a recursive formula for the Hilbert series of the
Tor algebra of a uniform matroid.

Theorem 6.5. Let r and k be positive integers. Then

Hilb

(
Tor

S◦
Ur,k+r

•
(
C[ΣUr,k+r

],C
)
•

)
=Hilb

(
Tor

S◦
Ur,k+r

•
(
C[ΣUr,k+r,∅],C

)
•

)
+

r−1∑
i=1

(
r + k

i

)(
y − yi

1− y

)
Hilb

(
Tor

S◦
Ur−i,r+k−i

•
(
C[ΣUr−i,r+k−i

],C
)
•

)
.

1.2. Outline. Let us briefly outline the structure of this paper. In Section 2 we recall
the basic notations from matroid theory and commutative algebra which we use. Some
small lemmas are also proved in this section. In Sections 3 and 4 we compute the

Hilbert series of TorSM
• (C[ΣM,∅],C)• and Tor

S◦
M

• (C[ΣM,∅],C)•, respectively; this latter
group plays the role of the base case of the matroidal flip induction. In Section 5 we
introduce the machinery of matroidal flips and show they induce a long exact sequence
of Tor groups. Finally, in Section 6 we prove the announced results using these long
exact sequences.

We note the majority of the content of Section 3 appears in previous literature. The
algebra TorSM

• (C[ΣM,∅],C)• has been studied in [9,18] in relation to facet ideals. As far
as we are aware, the explicit computation we produce of Hilb

(
TorSM

• (C[ΣM,∅],C)•
)
as

an evaluation of the Tutte polynomial of M has not yet appeared; however, the Hilbert
series Hilb

(
TorSM

• (C[ΣM,∅],C)•
)
for the Alexander dual of ΣM,∅ has been written down

in [12,19,20], and the authors of [19] use the Betti numbers of the Stanley–Reisner ring
of the Alexander dual to write an equation for the evaluation of the Tutte polynomial
we produce. We refer the reader to Remark 3.10 for further discussion.
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2. Notation

2.1. Matroids. We begin by reviewing the basic definitions and terminology of ma-
troids. We recommend [22] or [26] for more details.

2.1.1. Definitions of a Matroid. Let E be a finite set. We define a matroid M on E to
be a non-empty collection B(M) of subsets of E which satisfies the following exchange
property: For B1, B2 ∈ B(M) and x ∈ B1 \ B2, there exists y ∈ B2 \ B1 such that
(B1 \ x) ∪ y ∈ B(M). We call elements of B(M) bases.

A subset of E is independent if it is contained in some basis of M; otherwise the set
is dependent. A circuit is a minimal dependent subset, and a loop is a circuit of one
element.

Independent sets give rise to the rank function of M,

rankM : 2[n] → Z≥0, rankM(A) = max {|I| : I ⊆ A is independent} .
A flat of rank j is a maximal element in the set of rank j subsets of [n]. The set of
all flats of M forms a lattice which we denote L(M). If we remove the minimal and

maximal elements, say 0̂ and 1̂, of L(M), we create the partially ordered set of proper

non-empty flats of M. We denote this by L̂(M). We say I spans a flat F if I ⊆ F and
rankM(I) = rankM(F ).

Unless otherwise stated, our convention will be that a matroid M is defined on the
ground set [n] = {1, . . . , n} and has rank r > 0.

2.1.2. Operations on Matroids. We now define three operations on matroids: restric-
tion, contraction, and duality.

First we define matroid restriction. For a flat F , the matroid MF is defined on the
ground set F with bases

B
(
MF

)
= {I ⊆ F : I is an independent set of M and rankM(I) = rankM(F )} .

The lattice of flats of L(MF ) is identified with the interval [0̂, F ] in L(M). This defini-
tion extends verbatim for the restriction to any subset W ⊆ [n], not just to flats. In
this case it is customary to write the restriction as M |W .

Second we define matroid contraction. For a flat F , the matroid MF is defined on
the ground set [n] \ F with bases

B (MF ) = {I ⊆ [n] \ F : |I| = rankM(M)− rankM(F ) and I ∪ F spans M} .

Now the lattice of flats of L (MF ) is identified, via union with F , the interval [F, 1̂] in
L(M).
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Finally, the dual matroid M∗ is defined on [n] by

B (M∗) = {[n] \B : B ∈ B(M)} .

2.1.3. Activity and Passivity in Matroids. Our convention that matroids have ground
set [n] yields a preferred ordering on the elements of the ground set. This choice allows
us to define the important notions of activity and passivity in matroids; all the results
in this paper are independent of this choice of ordering.

Suppose B is a basis of M, and take x ∈ [n] \B. Then B ∪ x is a dependent set, so
it contains a unique circuit CB∪x which we call the fundamental circuit of B ∪ x. For
any y ∈ CB∪x, the set (B ∪ x) \ y is a basis.

With respect to B ∈ B(M), an element x ∈ [n] \ B is externally active if it is the
smallest element in CB∪x. Otherwise, we say x is externally passive.
Using duality we have a similar notion of internal activity. With respect to a basis

B ∈ B(M), an element x ∈ B is internally active if it is externally active with respect
to M \B ∈ B (M∗).

Definition 2.1. For a basis B, we define ea(B), ep(B), and ia(B) to be the number
of externally active, externally passive, and internally active elements with respect to
B. Let EP(B) be the set of externally passive elements with respect to B.

The generating function of bases of M with given internal and external activity is the
Tutte polynomial. This polynomial specializes to many classical invariants of graphs
and matroids [5].

Definition 2.2. The Tutte polynomial of a matroid M is

TM(x, y) =
∑

B∈B(M)

xia(B)yea(B).

Of special interest to us are the bases with no externally active elements, or equiva-
lently, bases with the maximal number of externally passive elements. These are called
no-broken-circuit-, or nbc-, bases. We will denote the set of nbc-bases of M by nbc(M).
We conclude this subsection by proving two lemmas on external passivity.

Lemma 2.3. Let M be a loopless matroid on [n] and B a basis. Then(
ep(B)

i

)
= |{W ⊆ [n] : |W | = |B|+ i and B ∈ nbc (M |W )}| .

Proof. A subset W ⊆ [n] satisfies B ∈ nbc(M |W ) if and only if B ⊆ W and every
x ∈ W \B is externally passive with respect to B. So for a fixed i, the set on the right-
hand-side of the statement is uniquely determined by choosing i elements of EP(B),
and this is counted by the left-hand-side. □

The set B(M) is linearly ordered by the lexicographic order. Let Bmax be the maximal
element in this order.

Lemma 2.4. Let M be a loopless matroid on [n]. Then ep(B) = 0 if and only if
B = Bmax.



TOR GROUPS OF MATROIDS 7

Proof. We prove the contrapositive. Suppose ep(B) ̸= 0; we will construct a basis
which is greater than B lexicographically. Choose x ∈ EP(B) and y ∈ CB∪x with
y < x. The basis (B \ y) ∪ x is greater than B, hence B ̸= Bmax.
Conversely, suppose B ̸= Bmax, and let x be the maximal element in Bmax \ B.

We want to show that x ∈ EP(B). To start, take y ∈ CB∪x with y /∈ Bmax, and it
will suffice to show y < x. Consider the cycle CBmax∪y. There exists z ∈ CBmax∪y with
z /∈ B. The maximality assumption on x implies z < x. Similarly, the fact (Bmax\z)∪y
is a basis, combined with the maximality of Bmax, implies y < z. Therefore we have
shown y < x, so x ∈ EP(B), and ep(B) ̸= 0. □

2.2. Bergman Fans and Stanley–Reisner Rings. Let M be a loopless matroid on
the ground set [n]. The main geometric objects we consider are the Bergman fans ΣM,∅
and ΣM and their associated toric varieties X(ΣM,∅) and X(ΣM). We define these fans
in the more general context of Bergman fans associated to order filters, following [1].
This generality is necessary in Section 5 to discuss matroidal flips.

Definition 2.5. An order filter P of M is a subset of L̂(M) which is closed under

upward inclusion: If F ≤ G in L̂(M) and F ∈ P , then G ∈ P as well.

The Bergman fans we consider live in the quotient space Rn/R · (1, . . . , 1). For
coordinates, let {f1, . . . , fn} be a basis of Rn, and consider the quotient π : Rn →
Rn/R · (1, . . . , 1). The elements {ei := π(fi)} span an integral lattice NM, and for a
subset S ⊆ [n] we define

eS =
∑
i∈S

ei.

For a chain F ⊆ L̂(M) and I ⊆ [n], we write I < F if and only if I is contained in
each element of F . For I < F we define the cone

σI<F = cone ({ei, eF : i ∈ I, F ∈ F}) .

Definition 2.6. Let P be an order filter. The Bergman fan ΣM,P is the integral fan
in Rn/R · (1, . . . , 1) defined by

ΣM,P =
{
σI<F : I spans no element of P ∪ 1̂ and F ⊆ P

}
.

In the case P = L̂(M), we write ΣM instead of ΣM,P .

Attached to a fan Σ is its Stanley–Reisner ring C[Σ] which captures the combinatorial
stucture of Σ.

Definition 2.7. For a fan Σ, let Σ(1) denote the set of all rays. The Stanley–Reisner
ring of Σ is defined by

C[Σ] =
C[xρ : ρ ∈ Σ(1)]

IΣ
, IΣ = ⟨xρ1xρ2 · · · xρs : cone (ρ1, ρ2, . . . , ρs) /∈ Σ⟩.

The ideal IΣ is called the Stanley–Reisner ideal.
For the fans ΣM,P we will write xi and xF , instead of xei and xeF , for the indetermi-

nants corresponding to the rays ei and eF .
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Define the rings

SM = C[x1, . . . , xn] and S◦
M = C[x1 − xn, . . . , xn−1 − xn] ⊆ SM.

Note that these rings depend only of the ground set [n] and not the bases of M. For
i ∈ [n] and Stanley–Reisner ring C[ΣM,P ], define the element

δixi =

{
xi if xi ∈ C[ΣM,P ]

0 otherwise.

The map

SM −→ C[ΣM,P ]

xi 7−→ δixi +
∑

F∈P,i∈F

xF

makes C[ΣM,P ] an SM- and S◦
M-algebra. By the Feichtner–Yuzvinski presentation of

A• (M), we find

Tor
S◦
M

0 (C[ΣM],C)• ∼=
C[ΣM]

im (S◦
M)

∼= A• (M) ,

and so the higher Tor groups

Tor
S◦
M
>0 (C[ΣM],C)•

measure the extra relations between the generators of im (S◦
M).

The second factor of all Tor groups will be C, so we omit this factor from now on.

Example 2.8. Let us describe in detail ΣM,∅ and C[ΣM,∅].
The fan ΣM,∅ ⊆ Rn/R · (1, . . . , 1) has rays

ΣM,∅(1) = {ei : i ∈ [n]} ,

and all cones of the fan are of the form σI<∅ where I does not span 1̂. In other words,
cone({ei : i ∈ I}) ∈ ΣM,∅ if and only if I does not contain a basis of M.

Therefore, the Stanley–Reisner ideal of ΣM,∅ is given by

IΣM,∅ =

〈∏
i∈B

xi : B ∈ B(M)

〉
.

This ideal appears in [9, 18] as the facet ideal of the independence complex of M.

2.3. The Koszul Resolution. The Koszul resolution of C gives an explicit way of

computing the Tor algebra Tor
S◦
M

• (−,C)•. We define this resolution for any polynomial
ring defined over C.

Let S = C[x1, . . . , xn], A an S-module, and C the residue field of the maximal
homogeneous ideal of S. Let L be the ideal of S generated by degree 1 elements. Then

(2) 0 →
n−1∧

L→ · · · →
2∧
L→ L→ 0
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is a free resolution of C in the category of S-modules. Explicitly, the differential applied
to an element ℓ1 ∧ · · · ∧ ℓk is defined as

d (ℓ1 ∧ · · · ∧ ℓk) =
k∑
j=1

(−1)jℓj ·
(
ℓ1 ∧ · · · ∧ ℓ̂j ∧ · · · ℓk

)
.

Let K• (A)S be the complex obtained by tensoring (over S) the Koszul resolution in
(2) with A. We then identify the Koszul cohomology H t (K• (A)S) with the Tor groups
TorSt (A).

We now use these Koszul resolutions to prove a Künneth formula for the Tor algebra
of tensor products of modules over polynomial rings. We use this heavily in Section 5.

Definition 2.9. Let S and R be polynomial rings over C, and suppose S → A and
R → B are S- and R-modules. Define the tensor module A ⊗C B over S ⊗C R from
the map S ×R → A×B.

For complexes (A•, d) and (B•, d′), define the tensor complex ((A⊗B)•, δ) by

(A⊗B)t =
⊕

t1+t2=t

At1 ⊗C B
t2

and differential

δ : At1 ⊗Bt2 −→ At1−1 ⊗Bt2 ⊕ At1 ⊗Bt2−1

δ(a⊗ b) 7−→ da⊗ b+ (−1)t1a⊗ d′b.

Lemma 2.10. Let S and R be polynomial rings over C, and let A, B be S- and
R-modules respectively. The map

(K(A)S ⊗K(B)R)
• −→ K•(A⊗C B)S⊗CR(

a⊗
∧

ℓi

)
⊗

(
b⊗

∧
µj

)
7−→ (a⊗ b)⊗

(∧
ℓi ∧

∧
µj

)
is an isomorphism between the tensor complex of Koszul complexes and the Koszul
complex of the tensor module. In particular,⊕

t1+t2=t

H t1(K•(A)S)⊗C H
t2(K•(B)R) ∼= H t(K•(A⊗C B)S⊗CR).

Proof. Define an ordered basis of the degree 1 elements of S⊗CR by taking an ordered
basis of the degree 1 elements of S followed by an ordered basis of the degree 1 elements
of R. Then the isomorphism

(K(A)S ⊗K(B)R)
• −→ K•(A⊗C B)S⊗CR

follows immediately from the definition of the Koszul complex. Alternatively, this
statement is [8, Proposition 17.9]. The conclusion about the isomorphism of coho-
mology groups is the Künneth formula for complexes of vector spaces [25, Theorem
3.6.3]. □
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2.4. Hilbert Series. Returning to the main case of the SM- and S
◦
M- algebras C[ΣM,P ],

the Koszul construction makes it clear that the Tor algebras have a natural bigrading

TorSM
t (C[ΣM,P ])s and Tor

S◦
M
t (C[ΣM,P ])s .

The grading t, or Tor degree, comes from indexing of the Tor functors, while the grading
s, or Stanley–Reisner degree, is inherited from the grading of C[ΣM,P ] as a polynomial
ring. Therefore the differential of the Koszul complex is homogenous of degree −1 in
Tor degree and degree 1 in Stanley–Reisner degree.

The complex dimension of each bigraded piece is called a Betti number of C[ΣM,P ].
Their generating function is the Hilbert series.

Definition 2.11. Let V•,• =
⊕

i,j Vi,j be a bigraded vector space. The Hilbert series
of V is

Hilb (V•,•) =
∑
i,j

dimVi,jx
iyj.

So in our bigrading of the Tor algebra we have

Hilb
(
Tor

S◦
M

• (C[ΣM,P ])•

)
=

∑
i,j

dimTor
S◦
M
i (C[ΣM,P ])j x

iyj.

As a first computation, we calculate Hilb
(
Tor

S◦
M

• (C[ΣM])•

)
for rank 1 matroids.

Proposition 2.12. Let M be a rank 1 matroid on [n]. Then

Hilb
(
Tor

S◦
M

• (C[ΣM])•

)
= (1 + x)n−1.

Proof. As an S◦
M-algebra, C[ΣM] ∼= C. The Koszul complex K•(C)S◦

M
has vanishing

differentials, and dimKi(C)S◦
M
=

(
n−1
i

)
, concentrated in Stanley–Reisner degree 0. □

In Section 4 we will need the fact that Hilb
(
Tor

S◦
M

• (C[ΣM,∅])•

)
is a polynomial and

not just a (potentially infinite) power series. While this is an immediate implication of

Franz’s result identifying Tor
S◦
M

• (C[ΣM,∅])• with the cohomology ring of X(ΣM,∅), we
prefer to give a proof in terms of the Koszul complex because it is of combinatorial
interest. The main idea is that just as computations involving the Stanley–Reisner ring
may be reduced to computations involving only square-free monomials, the multilinear
analogue is true for the Koszul complex.

To describe this, we must use an explicit basis of K•(ΣM,∅)S◦
M
over C. For a vector

ℓ ∈ Zn≥0, write ℓ = (ℓ1, . . . , ℓn), and define the monomial

xℓ =
n∏
i=1

xℓii .

We define the support of ℓ to be

supp(ℓ) = {i ∈ [n] : ℓi ̸= 0} .
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Note that xℓ ̸= 0 in C[ΣM,∅] if and only if supp(ℓ) contains no basis of M, or equivalently
rankM(supp(ℓ)) < r. The set

{
xℓ : ℓ ∈ Zn≥0 and rankM(supp(ℓ)) < r

}
is a basis of

C[ΣM,∅].
For each ℓ with rankM(supp(ℓ)) < r, we construct an ordered basis for the degree 1

elements of S◦
M. Let ℓ+ = max([n] \ supp(ℓ)); this exists because supp(ℓ) ̸= [n]. We

then have the basis of L {
xi − xℓ+ : i ∈ [n] \ ℓ+

}
,

and this induces the basis of
∧• L

Bℓ =
{
(xi1 − xℓ+) ∧ · · · ∧ (xit − xℓ+) : i1 < · · · < it

}
.

A basis for K•(ΣM,∅)S◦
M
is

{xℓ ⊗ ξ : rankM(supp(ℓ)) < r and ξ ∈ Bℓ} .
We now come to the square-free analogue of the Koszul complex. A basis element

xℓ ⊗ ξ is square-free if maxi∈[n] ℓi ≤ 1 and ξ = (xi1 − xℓ+) ∧ · · · ∧ (xit − xℓ+) with each
ik /∈ supp(ℓ).
The span of the square-free basis elements forms a subspace we denote K•

sf (ΣM,∅)S◦
M
,

and we want to show this is a subcomplex as well. It is straightforward that the
differential of an element of K•

sf (ΣM,∅)S◦
M
can be written as the linear combination of

elements xℓ ⊗ ξ such that maxi∈[n] ℓi ≤ 1. It remains to verify that no xi − xℓ+ with
i ∈ supp(ℓ) occurs in ξ. For this we need the following lemma.

Lemma 2.13. Suppose z ∈ K•(ΣM,∅)S◦
M

satisfies dz ∈ K•
sf (ΣM,∅)S◦

M
. For j ∈ [n],

let k be the maximum number such that xkj occurs in a non-zero term of the basis
representation of z; assume k > 0. Writing z in terms of the basis

z =
∑
ℓ

∑
ξ∈Bℓ

cℓ,ξ · xℓ ⊗ ξ,

if ℓj ≥ k and (xj − xℓ+) appears in ξ, then cℓ,ξ = 0.

Proof. We consider the basis elements with the maximal number of xj terms appearing:

z =
∑

{ℓ:ℓj=k}

∑
ξ∈Bℓ

containing (xj − xℓ+ )

cℓ,ξ · xℓ ⊗ ξ + other terms.

Taking the differential, we find

dz =
∑

{ℓ:ℓj=k}

∑
ξ∈Bℓ

containing (xj − xℓ+ )

±cℓ,ξ · xℓ+ej ⊗ ξ \ (xj − xℓ+) + terms not involving xk+1
j .

Here ej ∈ Zn≥0 is 1 in the j-th coordinate and 0 elsewhere, and ξ \ (xj − xℓ+) is the
element of Bℓ obtained by removing the factor of (xj − xℓ+) from ξ. The assumption
that k > 0 implies supp(ℓ+ ej) = supp(ℓ) whenever ℓj = k. In particular,∑

{ℓ:ℓj=k}

∑
ξ∈Bℓ

containing (xj − xℓ+ )

±cℓ,ξ · xℓ+ej ⊗ ξ \ (xj − xℓ+)
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is a sum of non-square-free basis elements, so cℓ,ξ = 0 if ℓj ≥ k and (xj − xℓ+) appears
in ξ. □

Lemma 2.14. The subspace K•
sf (ΣM,∅)S◦

M
is a subcomplex.

Proof. Let z ∈ K•
sf (ΣM,∅)S◦

M
and dz its differential. Then dz satisfies the assumptions

of the previous lemma because ddz = 0. Above we noted that dz can be written as the
linear combination of elements xℓ ⊗ ξ such that maxi∈[n] ℓi ≤ 1 and that it remains to
verify that no xi−xℓ+ with i ∈ supp(ℓ) occurs in ξ. Applying the lemma for all i ∈ [n]
verifies this condition. □

In contrast to K• (ΣM,∅)S◦
M
, the complex K•

sf (ΣM,∅)S◦
M
is finite-dimensional; however,

they are quasi-isomorphic.

Proposition 2.15. The natural inclusion of complexes K•
sf (ΣM,∅)S◦

M
↪→ K•(ΣM,∅)S◦

M

induces an isomorphism

H•(K•
sf (ΣM,∅)S◦

M
) ∼= H•(K•(ΣM,∅)S◦

M
).

In particular Tor
S◦
M

• (C[ΣM,∅])• is finite-dimensional.

Proof. We will prove that any z ∈ K•(ΣM,∅)S◦
M
satisfying dz ∈ K•

sf (ΣM,∅)S◦
M
is cohomol-

ogous to an element of K•
sf (ΣM,∅)S◦

M
. This statement is sufficient. Indeed, it implies any

cycle of K•(ΣM,∅)S◦
M

is cohomologous to a cycle of K•(ΣM,∅)S◦
M
, and therefore implies

the surjectivity of the map

H•(K•
sf (ΣM,∅)S◦

M
)↠ H•(K•(ΣM,∅)S◦

M
).

Moreover, if a cycle z ∈ K•
sf (ΣM,∅)S◦

M
is a boundary in K•(ΣM,∅)S◦

M
, then applying the

statement to a lift of z in K•(ΣM,∅)S◦
M
shows z is a boundary as well in K•

sf (ΣM,∅)S◦
M
.

This implies the injectivity of the map

H•(K•
sf (ΣM,∅)S◦

M
) ↪→ H•(K•(ΣM,∅)S◦

M
).

So suppose z ∈ K•(ΣM,∅)S◦
M
satisfies dz ∈ K•

sf (ΣM,∅)S◦
M
, and write z in terms of the

basis of K•(ΣM,∅)S◦
M
:

z =
∑
ℓ

∑
ξ∈Bℓ

cℓ,ξ · xℓ ⊗ ξ.

This allows us to define the excess degree by

e. deg(z) = max {(max(ℓ1 − 1, 0), . . . ,max(ℓn − 1, 0)) : cℓ,ξ ̸= 0 for some ξ} ,
with the maximum taken with respect to the lexicographical ordering of Zn≥0. The
excess degree measures how far the non-zero xℓ appearing in z are from being square-
free.

We claim that if e. deg(z) = 0⃗, then z ∈ K•
sf (ΣM,∅)S◦

M
. Indeed, e. deg(z) = 0⃗ implies

that if maxi∈[n] ℓi > 1, then cℓ,ξ = 0, and applying Lemma 2.13 for all i ∈ [n] implies
that if i ∈ supp(ℓ) and (xi − xℓ+) appears in ξ, then cℓ,ξ = 0. Together, this says z is
the sum of square-free basis elements.

Now assume e. deg(z) > 0⃗. By induction it suffices to show that z is cohomologous
to w ∈ K•(ΣM,∅)S◦

M
with e. deg(w) < e. deg(z).
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Let j be the minimal element of [n] such that e. deg(z)j > 0, and set k = e. deg(z)j.
Define

v =
∑

{ℓ:ℓj=k}

cℓ,ξ · xℓ−ej ⊗ (xj − ℓ+) ∧ ξ

We claim that w = z−dv satisfies e. deg(w) < e. deg(z). By construction, e. deg(w)j <
e. deg(z)j, because dv cancels all terms in z containing xkj . For i < j, applying Lemma
2.13 to z shows dv contributes no square, or higher, powers of xi. Thus e. deg(w)i <
e. deg(z)i as well. By the lexicographical ordering e. deg(w) < e. deg(z), and this
completes the proof. □

3. TorSM
• (C[ΣM,∅])• via Hochster’s Formula

In this section we determine

Hilb
(
TorSM

• (C[ΣM,∅])•
)

by way of Hochster’s formula. For this, it is traditional to work with simplicial com-
plexes rather than fans.

Let ∆ be a simplicial complex on [n], and let S∆ = C[x1, . . . , xn].
Definition 3.1. The Stanley–Reisner ring of ∆ is

C[∆] =
S∆

⟨xi1 · · ·xij : {i1, . . . , ij} /∈ ∆⟩.
Hochster’s Formula describes how to compute the Betti numbers of the Stanley–

Reisner ring of a simplicial complex in terms of its reduced cohomology. We recall the
formula for the Z2-graded Betti numbers; many sources have a finer Z × Zn-grading
for the Betti numbers based on the support of a representative in the cohomology of
the Koszul complex, e.g. [21, Theorem 5.12]. In passing from the ring SM to S◦

M as we
do in Section 4, this grading is lost, so we prefer not to introduce it.

Theorem 3.2 (Hochster’s Formula). Let ∆ be a simplicial complex on [n]. Then

dimTorS∆
t (C[∆])s =

∑
W⊆[n]

|W |=t+s

dim H̃s−1(∆|W ;C),

where ∆|W is the restriction of the simplicial fan ∆ to the vertices in W .

For this to be useful in our context, we start by turning ΣM,∅ into a simplicial
complex.

Definition 3.3. Intersecting ΣM,∅ with the unit sphere yields the non-spanning complex
NS(M). Concretely, NS(M) is a simplicial complex on [n] whose faces are the non-
spanning sets in [n], that is, those subsets which do not span M. Note that as SM-
algebras C[ΣM,∅] ∼= C[NS(M)].

Corollary 3.4. Let M be a matroid. Then

dimTorSM
t (C[ΣM,∅])s =

∑
W⊆[n]

|W |=t+s

dim H̃s−1 (C[NS(M)|W ];C) .
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We first compute the reduced cohomology for non-spanning complexes.

Proposition 3.5. For matroid M of rank r,

dim H̃ i (NS(M);C) =

{
|nbc (M)| i = r − 2

0 i ̸= r − 2.

Proof. The Alexander dual of NS(M) is the independence complex IN (M∗) of the dual
matroid. This is the complex on [n] whose faces are independent sets of M∗; see
[18, Proposition 1] for a proof. The reduced homology groups of this complex were
computed in [2, Theorem 7.8.1] to be

H̃i (IN(M
∗);Z) ∼=

{
Z|nbc(M)| i = r − 1

0 i ̸= r − 1.

The result then follows from Combinatorial Alexander Duality [3, Theorem 1.1]

H̃i (NS(M);Z) ∼= H̃n−i−3 (IN (M∗) ;Z) .
□

This allows us to compute each summand on the right-hand side of Corollary 3.4.

Proposition 3.6. Let M be a matroid of rank r on [n] and W ⊆ [n].

(1) If W = ∅,

dim H̃s−1 (NS(M)|W ;C) =

{
0 s ̸= 0

1 s = 0.

(2) If W is non-empty and rankM(W ) < r, for all s

H̃s−1 (NS(M)|W ;C) = 0.

(3) If W is non-empty and rankM(W ) = r,

dim H̃s−1 (NS(M)|W ;C) =

{
0 s ̸= r − 1

|nbc (M |W )| s = r − 1.

Proof. (1) This is the computation of the reduced homology of the empty simplicial
complex.

(2) In this case, NS(M)|W is a non-empty simplex, and the reduced cohomology
vanishes.

(3) IfW has full rank, then NS(M)|W is NS (M |W ). The cohomology of this complex
is computed in Corollary 3.5.

□

From Hochster’s Formula and Proposition 3.6, we have the following Hilbert series.

Proposition 3.7. For a matroid M of rank r,

Hilb
(
TorSM

• (C[ΣM,∅])•
)
= 1 +

∑
{W⊆[n]:rankM(W )=r}

|nbc (M |W )|x|W |−r+1yr−1.

An application of Lemma 2.3 re-indexes the summation over bases of M.
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Proposition 3.8. For a matroid M of rank r,

Hilb
(
TorSM

• (C[ΣM,∅])•
)
= 1 + xyr−1

∑
B∈B(M)

(1 + x)ep(B) .

As n − r − ea(B) = ep(B), we recognize this as a specialization of the Tutte poly-
nomial.

Theorem 3.9. For a matroid M of rank r,

Hilb
(
TorSM

• (C[ΣM,∅])•
)
− 1 = x (1 + x)n−r yr−1TM

(
1,

1

1 + x

)
.

Remark 3.10. Similar specializations of the Tutte polynomial have appeared in the
coding theory literature, as we now summarize. For details and definitions in coding
theory, see [5, Section 6.5].

Let C be a [n, r]-linear code over q and M(C) the associated matroid. The generating
function for the number of codewords in C with given weight w is the codeweight
enumerator

AC,q(z) =
∑
c∈C

zw(c).

Greene [16] showed that the codeweight enumerator is a specialization of the Tutte
polynomial of M(C) (see [5, Proposition 6.5.1] for the statement we give),

(3) AC,q(z) = (1− z)rzn−rTM(C)

(
1 + (q − 1)z

1− z
,
1

z

)
.

Another application of Greene’s result implies there is a bivariate extended weight
enumerator polynomial WC(y, z) with the property that

WC(q
i, z) = ACi,qi(z)

for i ≥ 1. Here Ci is the extension of C over qi. Theorem 3.9 says that for an [n, r]-linear
code C (over any finite field),

Hilb
(
Tor

SM(C)
•

(
C[ΣM(C),∅]

)
•

) ∣∣
x=y=z−1

− 1 = (−1)rWC(0, z).

Johnsen, Roksvold, and Verdure obtain a similar formula for WC(0, z) in terms of
the Betti numbers of the Stanley–Reisner ideal of IN (M(C)∗) [19, Corollary 5.1].

4. Tor
S◦
M

• (C[ΣM,∅])• Via Flat Base Change

We now use flat base change and a long exact sequence to compute the Betti numbers
of C[ΣM,∅] over S

◦
M from the Betti numbers over SM.

As SM
∼= S◦

M[xn], the inclusion S◦
M ↪→ SM is flat, so the following result on flat base

change applies.

Proposition 4.1 (cf. [25, Proposition 3.2.9]). If R → S is a flat ring map, A is an
R-module, and B is an S-module, there is a natural isomorphism

TorR• (A,B) ∼= TorS• (A⊗R S,B)
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For an auxilliary indeterminant y, we endow C[ΣM,∅][y] with the structure of an
SM-algebra via the map

SM −→ C[ΣM,∅][y]

xi 7−→ xi + y.

Lemma 4.2. There is a degree-preserving isomorphism

Tor
S◦
M

• (C[ΣM,∅])•
∼= TorSM

• (C[ΣM,∅][y])• .

Proof. Apply flat base change to R = S◦
M, S = SM, A = C[ΣM,∅], and B = C.

As SM-algebras,
C[ΣM,∅]⊗S◦

M
SM

∼= C[ΣM,∅][y]

via the S◦
M-balanced map

C[ΣM,∅]× SM → C[ΣM,∅][y]

which is the natural inclusion on the first factor and the structure map on the second
factor.

All of the isomorphisms preserve degree, so the result is proved. □

We now compare the SM-algebras C[ΣM,∅] and C[ΣM,∅][y] through the short exact
sequence

0 → C[ΣM,∅][y]
·y−→ C[ΣM,∅][y] → C[ΣM,∅] → 0.

By the identification in Lemma 4.2, this produces the long exact sequence

(4)
· · · → TorSM

•+1 (C[ΣM,∅])• → Tor
S◦
M

• (C[ΣM,∅])• → Tor
S◦
M

• (C[ΣM,∅])•+1

→ TorSM
• (C[ΣM,∅])•+1 → Tor

S◦
M

•−1 (C[ΣM,∅])•+1 → · · · .
In order to compute the kernel and cokernel of the maps

Tor
S◦
M

• (C[ΣM,∅])• → Tor
S◦
M

• (C[ΣM,∅])•+1

we use following vanishing lemma.

Proposition 4.3. Let M be a matroid of rank r.

(1) For s > r − 1, Tor
S◦
M

• (C[ΣM,∅])s = 0.

(2) For t > 0 and s < r − 1, Tor
S◦
M
t (C[ΣM,∅])s = 0.

In particular, Tor
S◦
M
>0 (C[ΣM,∅])• = Tor

S◦
M
>0 (C[ΣM,∅])r−1.

Proof. (1) For t ≥ 0 such that Tor
S◦
M
t (C[ΣM,∅])• ̸= 0, let st be the maximal integer

with Tor
S◦
M
t (C[ΣM,∅])st ̸= 0 (the existence of such an integer is guaranteed by

Proposition 2.15). Then the long exact sequence (4) implies the connecting
homomorphism

TorSM
t+1 (C[ΣM,∅])st ↠ Tor

S◦
M
t (C[ΣM,∅])st

is surjective, as Tor
S◦
M
t (C[ΣM,∅])st+1 = 0. As TorSM

t+1 (C[ΣM,∅])s = 0 for s > r−1,
we must have st ≤ r − 1.
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(2) For t > 0 such that Tor
S◦
M
t (C[ΣM,∅])• ̸= 0, let st be the minimal integer with

Tor
S◦
M
t (C[ΣM,∅])st ̸= 0. The long exact sequence (4) implies the injectivity of

the map

Tor
S◦
M
t (C[ΣM,∅])st ↪→ TorSM

t (C[ΣM,∅])st .

As TorSM
t (C[ΣM,∅])s = 0 for t > 0 and s < r − 1, we must have st ≥ r − 1.

□

We now deduce the Betti numbers of C[ΣM,∅] over S
◦
M.

Theorem 4.4. For a matroid M of rank r,

Hilb
(
Tor

S◦
M

• (C[ΣM,∅])•

)
=

r−1∑
i=0

yi + xyr−1
∑

B∈B(M)\Bmax

(1 + x)ep(B)−1.

Proof. By Proposition 4.3, the maps

Tor
S◦
M
t (C[ΣM,∅])• → Tor

S◦
M
t (C[ΣM,∅])•+1

in the long exact sequence (4) vanish for t > 0, because these Tor groups are supported
only in Stanley–Reisner degree r − 1. We therefore have the exact sequence

(5)
0 → Tor

S◦
M

1 (C[ΣM,∅])s → TorSM
1 (C[ΣM,∅])s → Tor

S◦
M

0 (C[ΣM,∅])s

→Tor
S◦
M

0 (C[ΣM,∅])s+1 → TorSM
0 (C[ΣM,∅])s+1 → 0.

By Proposition 3.8,

TorSM
1 (C[ΣM,∅])• = TorSM

1 (C[ΣM,∅])r−1 ,

and

TorSM
0 (C[ΣM,∅])• = TorSM

0 (C[ΣM,∅])0 .

For 0 ≤ s < r − 1, the exact sequence (5) reads

0 → Tor
S◦
M

1 (C[ΣM,∅])s → 0 → Tor
S◦
M

0 (C[ΣM,∅])s → Tor
S◦
M

0 (C[ΣM,∅])s+1 → 0,

and we have an isomorphism

Tor
S◦
M

0 (C[ΣM,∅])s
∼= Tor

S◦
M

0 (C[ΣM,∅])s+1 .

For s = −1, the exact sequence (5) reads

0 → 0 → 0 → 0 → Tor
S◦
M

0 (C[ΣM,∅])0 → TorSM
0 (C[ΣM,∅])0 → 0,

and this gives an isomorphism

Tor
S◦
M

0 (C[ΣM,∅])0
∼= TorSM

0 (C[ΣM,∅])0
∼= C.

By Proposition 4.3, Tor
S◦
M

0 (C[ΣM,∅])s = 0 for s > r − 1, so we obtain

dimTor
S◦
M

0 (C[ΣM,∅])s =

{
1 0 ≤ s ≤ r − 1

0 otherwise.
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Applying this to the first part of the exact sequence (5),

dimTor
S◦
M

1 (C[ΣM,∅])s ⊕ Tor
S◦
M

0 (C[ΣM,∅])s =

{
dimTorSM

1 (C[ΣM,∅])s + 1 0 ≤ s < r − 1

dimTorSM
1 (C[ΣM,∅])s otherwise.

From the second part of (5),

dimTor
S◦
M

0 (C[ΣM,∅])s + Tor
S◦
M

−1 (C[ΣM,∅])s =

{
dimTorSM

0 (C[ΣM,∅])s + 1 0 < s ≤ r − 1

dimTorSM
0 (C[ΣM,∅])s otherwise.

Similarly for t > 1, we have the short exact sequence

0 → Tor
S◦
M
t (C[ΣM,∅])• → TorSM

t (C[ΣM,∅])• → Tor
S◦
M
t−1 (C[ΣM,∅])• → 0,

and this implies

dimTor
S◦
M
t (C[ΣM,∅])s + Tor

S◦
M
t−1 (C[ΣM,∅])s = dimTorSM

t (C[ΣM,∅])s

for t > 1.
Altogether, these equations yield the relation of Hilbert series

(1 + x)Hilb
(
Tor

S◦
M

• (C[ΣM,∅])•

)
=

r−1∑
i=1

yi + x
r−2∑
i=0

yi +Hilb
(
TorSM

• (C[ΣM,∅])•
)

=
r−1∑
i=1

yi + x
r−2∑
i=0

yi + 1 + xyr−1
∑

B∈B(M)

(1 + x)ep(B)

=
r−1∑
i=1

yi + x
r−2∑
i=0

yi + 1 + xyr−1
∑

B∈B(M)\Bmax

(1 + x)ep(B) + xyr−1(Lemma 2.4)

= (1 + x)
r−1∑
i=0

yi + xyr−1
∑

B∈B(M)\Bmax

(1 + x)ep(B)

Now divide both sides by 1 + x. □

In the case M is a loopless matroid of rank 2, there is an isomorphism of S◦
M-algebras

C[ΣM] ∼= C[ΣM,∅]. This leads to the full description of the Tor algebra of such matroids.

Corollary 4.5. For a loopless matroid M of rank 2,

Hilb
(
TorS

◦
M (C[ΣM])

)
= 1 + y + xy

∑
B∈B(M)\Bmax

(1 + x)ep(B)−1.

For loopless matroids of arbitrary rank, Theorem 4.4 yields a combinatorial count

for dimTor
S◦
M
n−r (C[ΣM,∅])r−1.

Corollary 4.6. Let M be a loopless matroid of rank r on ground set [n]. For t > n− r

or s > r − 1, Tor
S◦
M
t (C[ΣM,∅])s = 0.
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In top degree,

dimTor
S◦
M
n−r (C[ΣM,∅])r−1 = |nbc(M)| ≠ 0.

Even though we have an explicit count of dimension, it is not clear how use the

previous proof to construct nice generators for Tor
S◦
M

• (C[ΣM,∅])•, realized as the coho-
mology of the Koszul complex H•(K•(C[ΣM,∅])S◦

M
). One must find explicit bases for

H̃s−1 (NS(M)|W ;C) and then run these through the isomorphism of Hochster’s Formula
and the exact sequences comparing the Tor groups over SM and S◦

M. However, one can
explicitly construct a monomial basis in the case of Tor1. This computation will be
important in the next section when discussing the boundary map of the long exact
sequence of matroidal flips.

Lemma 4.7. Let M be a loopless matroid of rank r. The set ∏
k∈B\iB

xk ⊗ (xiB − xjB) : B ∈ B(M) \Bmax, jB = maxEP(B), iB = min (CB∪jB)

 .

is a basis for H1(K•(C[ΣM,∅])S◦
M
) ∼= Tor

S◦
M

1 (C[ΣM,∅])•.

Proof. Let A denote the proposed basis, and write an element of A as

ηB =
∏

k∈B\iB

xk ⊗ (xiB − xjB).

Note that by Lemma 2.4, each ηB is non-zero (where B ̸= Bmax). The set A has
cardinality |B(M)| − 1, so Theorem 4.4 implies it has the cardinality of a basis. It
therefore suffices to show the elements of A are linearly independent. We will do this
by finding a linear map of rank |B(M)| − 1 on A.

Consider the short exact sequence defining the Stanley–Reisner ring,

0 → IΣM,∅ → SM → C[ΣM,∅] → 0.

It is an exact sequence of S◦
M-algebas. Because IΣM,∅ is supported only in Stanley–

Reisner degree r or higher, and the number of distinct degree r monomials in IΣM,∅ is
|B(M)|, it follows immediately from the degree of the differential in K•(IΣM,∅)S◦

M
that

dimTor
S◦
M

0

(
IΣM,∅

)
r
= |B(M)| .

In terms of Koszul cohomology, H0(K•(IΣM,∅)S◦
M
) has a basis{

xB :=
∏
i∈B

xi : B ∈ B(M)

}
.

We claim the connecting homomorphism

δ : H1
(
K•(C[ΣM,∅])S◦

M

)
→ H0

(
K•(IΣM,∅)S◦

M

)
has rank |B(M)| − 1 on A.
From the description of the connecting homomorphism via the snake lemma,

δ(ηB) = xB − xB∪jB\iB .
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The external passivity of jB implies that B < B ∪ jB \ iB in lexicographic order. For
any non-trivial linear combination

∑
B∈B\Bmax

αBηB, take B
′ to be the minimal basis

such that αB′ ̸= 0. Then

δ

 ∑
B∈B\Bmax

αBηB

 = αB′xB′ + terms involving larger bases ̸= 0.

Therefore δ has rank |B(M)| − 1 on A, and this proves the result. □

5. Matroidal Flips and the Tor Algebra of C[ΣM]

Having computed Hilb
(
Tor

S◦
M

• (C[ΣM,∅])•

)
, we now turn towards our goal of under-

standing the Tor algebra Tor
S◦
M

• (C[ΣM,∅])•. We do this by gradually modifying the fan
ΣM,∅ to become the fan ΣM,∅. As a result, the Stanley–Reisner ring C[ΣM,∅] is modified
to become the ring C[ΣM,∅]. This section relies heavily on the theory of matroidal flips
introduced in [1].

Definition 5.1. For two order filters (recall Definition 2.5) differing by a flat, say
Z = P+ \ P−, the tropical modification ΣM,P− ⇝ ΣM,P+ is called a matroidal flip. The
flat Z is called the center of the matroidal flip.

If P− is an order filter, we can construct a matroidal flip by taking Z to be any

maximal element of L̂(M) \ P− and then defining P+ = P− ∪Z. In particular, there is
a series of matroidal flips interpolating between ΣM,∅ and ΣM.

It is known that Chow rings decompose well under matroidal flips, and the goal of
this section is to extend this to the full Tor algebra. Following the notation of [1],
define

A• (M,P) := Tor
S◦
M

0 (C[ΣM,P ])•

and

A• (M) := Tor
S◦
M

0 (C[ΣM])• .

The authors of [1] use these matroidal flips to construct a short exact sequence of Chow
rings

0 → A•(M,P−) → A•(M,P+) → EZ0,• → 0,

where

EZ0,s =
⊕

s1+s2=s
s1>0

As1(MZ , ∅)⊗ As2 (MZ) .

An induction on the ground set of M and on order filters allows one to deduce properties
of A•(M), such as its Hilbert series, from those of A•(M, ∅).
We show this short exact sequence extends to a (not necessarily split) long exact

sequence of Tor groups

(6) · · · → EZ•+1,•−1 → Tor
S◦
M

•
(
C[ΣM,P− ]

)
• → Tor

S◦
M

•
(
C[ΣM,P+ ]

)
• → EZ•,• → · · · .
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Here

EZt,s =
⊕

t1+t2=t
s1+s2=s
t1+s1>0

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2 .

The proof of this fact is motivated by topology, and this reinforces the perspective
of viewing Tor algebras as cohomology rings. We study how the Tor algebra changes
under a matroidal flip by understanding how the topology of X(ΣM,P−) compares to
X(ΣM,P+). Matroidal flips behave like (or in some cases exactly are) blow ups, so
we can use the standard technique of computing the cohomology of a blow up by
comparing appropriate Mayer–Vietoris sequences of the cohomology of the blow up
and of the base space (see e.g. [17, pgs. 473-474]) to produce the long exact sequence
(6). In this description, EZ•,• plays the role of the cohomology ring of the exceptional
divisor modulo the cohomology ring of the center of the blow up (i.e., the subvariety
we blow up along).

5.1. The Cohomology of Blow Ups. Before discussing the case of matroidal flips,
let us consider the topological picture of a blow up and recall the comparison of Mayer–
Vietoris sequences expressing the cohomology of the blow up in terms of the cohomology
of the base space, center, and exceptional divisor.

Let X be a nice topological space, X ′ the blow up along the closed center Z ⊆ X,
and E the exceptional divisor. Let U− be a small neighborhood of Z, and U+ the
preimage of U− in X ′; it is a tubular neighborhood of E. See Figure 1 for an example.
The coverings {X ′ \ E,U+} of X ′ and {X \ Z,U−} of X induce the Mayer–Vietoris

exact sequences

· · · H•+1(U+ \ E) H•(X ′) H•(X ′ \ E)⊕H•(U+) H•(U+ \ E) · · ·

· · · H•+1(U− \ Z) H•(X) H•(X \ Z)⊕H•(U−) H•(U− \ Z) · · · .

There are homeomorphisms X ′\E ∼= X\Z and U+\E ∼= U−\Z and retracts of U+ onto
E and U− onto Z. Moreover, we have an injection H•(Z) ↪→ H•(E), as the cohomology
of the exceptional divisor is the cohomology of projective space tensor the cohomology
of the center. Thus, the differences between the exact sequences only involve the
cohomology of X, X ′, Z, and E. The following lemma from homological algebra
demonstrates how to compare these cohomology rings using a long exact sequence.

Lemma 5.2. Suppose A•
−, B

•
−, and C

•
− and A•

+, B
•
+, and C

•
+ are cocomplexes such

that ϵ : B•
− → B•

+ is an injection, ϕ : C•
− → C•

+ is an isomorphism, and there is a
commutative diagram of long exact sequences

· · · C•+1
+ A•

+ B•
+ C•

+ · · ·

· · · C•+1
− A•

− B•
− C•

− · · · .

γ+ α+ β+ γ+

γ−

ϕ

α−

ι

β−

ϵ

γ−

ϕ
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X

X ′

X \ Z

X ′ \ E

U−

U+

Figure 1. A Blow Up along a Point and the Open Covering

Then there is a long exact sequence

· · · → coker(B•+1
− → B•+1

+ )
γ−◦ϕ−1◦β+−−−−−−→ A•

−
ι−→ A•

+

α+−→ coker(B•
− → B•

+) → · · · .

Proof. Note this is well-defined as γ− ◦ β− : B•
− → A•−1

− is the zero map. The proof of
exactness is ultimately a diagram chase, and we include it for completeness.
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Exactness at A•
−: From the commutativity of the diagram, the map

ι ◦ γ− ◦ ϕ−1 ◦ β+ : coker(B•+1
− → B•+1

+ ) → A•
+

is the map γ+◦β+, which is zero by the exactness of the top row. Now suppose a ∈ ker ι.
From commutativity of the diagram and injectivity of ϵ, a ∈ kerα−. The exactness of
the bottom row allows us to find c ∈ C•+1

− such that γ−(c) = a. Then γ+ ◦ ϕ(c) = 0,
so the exactness of the top row allows us to find b ∈ B•+1

+ such that β+(b) = ϕ(c).
Therefore γ− ◦ ϕ−1 ◦ β+(b) = a.

Exactness at A•
+: Commutativity implies that α+◦ι : A•

− → coker(B•
− → B•

+) factors
through ϵ : B•

− → B•
+ and is therefore the zero map. Now take a+ ∈ ker(α+ : A

•
+ →

coker(B•
− → B•

+)). There is some b ∈ B•
− with ϵ(b) = α+(a). The injectivity of ϕ and

commutativity of the diagram implies β−(b) = 0, so we may find a− ∈ A•
− such that

α−(a−) = b. It may not be the case that ι(a−) = a+, but α+(a+ − ι(a−)) = 0, so
there is some c ∈ C•+1

+ with γ+(c) + ι(a−) = a+. Then γ− ◦ ϕ−1(c) + a− ∈ A•
−, and

ι(γ− ◦ ϕ−1(c) + a−) = a+.
Exactness at coker(B•

− → B•
+): Exactness of the top row implies β+ ◦ α+ = 0, so

γ− ◦ ϕ−1 ◦ β+ ◦ α+ : A
•
+ → A•−1

−

is the zero map. Now suppose b+ ∈ ker(γ− ◦ ϕ−1 ◦ β+). Then ϕ−1 ◦ β+(b+) ∈ ker(γ−),
so we may find b− ∈ B•

− with β−(b−) = ϕ−1 ◦ β+(b+). Then b+ − ϵ(b−) ∈ ker(β+), so
we find a ∈ A•

+ such that α+(a) = b+ − ϵ(b−). Finally, note that b+ and b+ − ϵ(b−)
represent the same element in coker(B•

− → B•
+). □

This produces the long exact sequence for the cohomology of a blow up

· · · → H•(X) → H•(X ′) → coker(H•(Z) → H•(E)) → · · · .
In the case of a blow up, the map H•(X) → H•(X ′) is also injective, so the long exact
sequence splits, and the cohomology of the blow up is relatively easy to compute. This
will be in distinction with the long exact sequence of a general matroidal flip which
does not split.

5.2. Matroidal Flips as Blow Ups. We will now see how matroidal flips are close
enough to blow ups that we may apply an analogue of the previous argument. The
most illustrative case is when the center Z = P+ \ P− of the matroidal flip has MZ a
boolean matroid.

Example 5.3. Suppose the matroidal flip ΣM,P− ⇝ ΣM,P+ has center Z such that MZ

is a boolean matroid.
Recall the description of Bergman fans ΣM,P given in Definition 2.6. The tropical

modification ΣM,P− ⇝ ΣM,P+ adds the ray σ∅<Z =
∑

i∈Z ei and subdivides each cone
σZ<F into the cones {σI<Z∪F : I ⊊ Z}. In other words, the tropical modification is a
stellar subdivision, and X(ΣM,P+) is the blow up of X(ΣM,P−) along the torus-invariant
subvariety V (σZ<∅).

Example 5.4. Consider now a general matroidal flip ΣM,P− ⇝ ΣM,P+ with center Z.
The tropical modification ΣM,P− ⇝ ΣM,P+ adds the ray σ∅<Z =

∑
i∈Z ei and replaces

each cone σZ<F with the cones {σI<Z∪F : I ⊂ Z and I does not span Z}. In the case
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MZ is not boolean, the support of the cone σZ<F strictly contains the union of the sup-
ports of the cones {σI<Z∪F : I ⊂ Z and I does not span Z}. In particular, X(ΣM,P+)
is not a blow up of X(ΣM,P−).

However, the map X(ΣM,P+) → X(ΣM,P−) does factor through the blow up of
X(ΣM,P−) along V (σZ<∅). Specifically, X(ΣM,P+) is an open subset of the blow up,
obtained by removing the closed subvarieties

{V (σI<Z∪F) : I ⊂ Z and I spans Z} .

We now construct a suitable subdivision of the fans ΣM,P+ and ΣM,P− in order to
induce suitable Mayer–Vietoris sequences to which we will apply Lemma 5.2.

Definition 5.5. For a matroidal flip ΣM,P− ⇝ ΣM,P+ with center Z, define the subfans

Π+ = {σI<F : I ⊊ Z and Z < F} ⊆ ΣM,P+ ,

H+ = {σI<F : Z /∈ F} ⊆ ΣM,P+ ,

Π− = {σI<F : I ⊆ Z and Z < F} ⊆ ΣM,P− ,

H− = {σI<F : I ̸= Z} ⊆ ΣM,P− .

Define the bigraded ring

EZt,s =
⊕

t1+t2=t
s1+s2=s
t1+s1>0

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2 .

The open toric subvarieties X(Π+) and X(H+) in X(ΣM,P+) play the roles of the
tubular neighborhood of the exceptional divisor and the complement of the exceptional
divisor. The intersection of the two open sets is

X(Π+) ∩X(H+) = X(Π+ ∩H+),

where Π+ ∩ H+ is the intersection of subfans of ΣM,P+ and therefore a subfan itself.
Similarly, X(Π−) and X(H−) in X(ΣM,P−) play the roles of the small neighborhood of
the center and the complement of the center. Their intersection is X(Π− ∩H−).

From the description of H+ and H−, one verifies that H+ = H− and Π+ ∩ H+ =
Π− ∩H− as fans in Rn/R · · · (1, . . . , 1). See Figure 2 for an example.
In terms of Stanley–Reisner rings, these decompositions of ΣM,P+ and ΣM,P− yield

the short exact sequences of S◦
M-algebras
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ΣU3,3,∅ ΣU3,3,{{1,2}}

Π− H− Π+ H+

Figure 2. An example of a matroidal flip and subdivision of the
Bergman fans.

0 C[ΣM,P+ ]
C[ΣM,P+

]

IΠ+
∩C[ΣM,P+

]
⊕ C[ΣM,P+

]

IH+
∩C[ΣM,P+

]

C[ΣM,P+
]

IΠ+
+IH+

∩C[ΣM,P+
]

0

0 C[ΣM,P+ ] C[Π+]⊕ C[H+] C[Π+ ∩H+] 0

0 C[ΣM,P− ] C[Π−]⊕ C[H−] C[Π− ∩H−] 0

0 C[ΣM,P− ]
C[ΣM,P− ]

IΠ−∩C[ΣM,P− ]
⊕ C[ΣM,P− ]

IH−∩C[ΣM,P− ]

C[ΣM,P− ]

IΠ−+IH−∩C[ΣM,P− ]
0

Recall our definition of δixi ∈ C[ΣM,P+ ] given by

δixi =

{
xi if xi ∈ C[ΣM,P+ ]

0 otherwise.

The map of S◦
M-algebras

ι : C[ΣM,P− ] → C[ΣM,P+ ],

defined by ι(xi) = δixi+xZ for i ∈ Z and ι(x) = x for any other indeterminant, defines
a map between the two exact sequences

0 C[ΣM,P+ ] C[Π+]⊕ C[H+] C[Π+ ∩H+] 0

0 C[ΣM,P− ] C[Π−]⊕ C[H−] C[Π− ∩H−] 0

ι ι ι

making the diagram commute. Because xZ = 0 in C[H+] = C[H−] and C[Π+ ∩H+] =
C[Π− ∩H−], the map ι is the identity map between these pairs.
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Applying the functors Tor
S◦
M

• (−,C)• produces the analogue of the Mayer–Vietoris
long exact sequence in each row.

· · · Tor
S◦
M

•
(
C[ΣM,P+ ]

)
• Tor

S◦
M

• (C[Π+])• ⊕ Tor
S◦
M

• (C[H+])• Tor
S◦
M

• (C[Π+ ∩H+])• · · ·

· · · Tor
S◦
M

•
(
C[ΣM,P− ]

)
• Tor

S◦
M

• (C[Π−])• ⊕ Tor
S◦
M

• (C[H−])• Tor
S◦
M

• (C[Π− ∩H−])• · · ·

ι ι

In order to compare Tor
S◦
M

•
(
C[ΣM,P− ]

)
• with Tor

S◦
M

•
(
C[ΣM,P+ ]

)
• via Lemma 5.2, it

then suffices to show

ι : Tor
S◦
M

• (C[Π−])• → Tor
S◦
M

• (C[Π+])•

is an injection.

Lemma 5.6. There are isomorphisms

Tor
S◦
M
t (C[Π+])s

∼=
⊕

t1+t2=t
s1+s2=s

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2

and

Tor
S◦
M
t (C[Π−])s

∼= 1⊗ Tor
S◦
MZ
t (C[ΣMZ

])s
such that ι is the natural inclusion.

In particular,

ι : Tor
S◦
M

• (C[Π−])• → Tor
S◦
M

• (C[Π+])•
is injective, and

coker(Tor
S◦
M

• (C[Π−])• → Tor
S◦
M

• (C[Π+])•)
∼= EZ•,• .

Proof. From the definition of Π+, we have the ring isomorphism

C[Π+] ∼= C[ΣMZ ,∅]⊗C C[xZ ]⊗C C[ΣMZ
].

The maps

S◦
MZ → C[ΣMZ ,∅], C[xZ ] = C[xZ ], and S◦

MZ
→ C[ΣMZ

]

give C[Π+] the structure of an S := S◦
MZ ⊗C C[xZ ]⊗C S

◦
MZ

-algebra. Applying Lemma
2.10 twice,

TorSt (C[Π+])s
∼=

⊕
t1+t2+t3=t
s1+s2+s3=s

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗Tor

C[xZ ]
t2 (C[xZ ])s2⊗Tor

S◦
MZ
t3 (C[ΣMZ

])s3 .

As

TorC[xZ ]
• (C[xZ ])• = Tor

C[xZ ]
0 (C[xZ ])0 ∼= C,

TorSt (C[Π+])s
∼=

⊕
t1+t2=t
s1+s2=s

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2 .

To show the same decomposition holds for Tor
S◦
M
t (C[Π+])s, we will construct a com-

mutative square
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S S◦
M

C[Π+] C[Π+]

ϕ+

ψ+

such that the vertical maps define the S- and S◦
M-algebra structures of C[Π+] and such

that the horizontal maps are degree-preserving isomorphisms. This yields a degree-
preserving isomorphism

Tor
S◦
M

• (C[Π+])•
∼= TorS• (C[Π+])• ,

and the decomposition will follow. Let a = max{i ∈ Z} and b = max{i ∈ [n] \ Z}.
The maps ϕ+ and ψ+ in the commutative square are given by

ϕ+(x) =


xa − xb x = xZ
xi − xj x = xi − xj with i, j ∈ Z

xi − xj x = xi − xj with i, j /∈ Z.

and

ψ(x) =

{
δaxa +

∑
{F :a∈F} xF − δbxb −

∑
{G:b∈G} xG x = xZ

x other indeterminants.

Therefore

Tor
S◦
M
t (C[Π+])s

∼=
⊕

t1+t2=t
s1+s2=s

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2 .

We now apply a similar technique to C[Π−]. From the definition of Π−, we have the
ring isomorphism

C[Π−] ∼= SMZ ⊗C C[ΣMZ
].

The maps

SMZ = SMZ and S◦
MZ

→ C[ΣMZ
]

make C[Π−] aR := SMZ⊗CS
◦
MZ

-algebra. Applying Lemma 2.10 and noting Tor
S
MZ

• (SMZ )• =

Tor
S
MZ

0 (SMZ )0
∼= C,

TorRt (C[Π−])s
∼= 1⊗ Tor

S◦
MZ
t (C[ΣMZ

])s .

Similar to the argument for C[Π+], we have a commutative square

R S◦
M

C[Π−] C[Π−]

ϕ−

ψ−
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with vertical maps defining the algebra structures and the horizontal maps degree-
preserving isomorphisms. Again taking b = max{i ∈ [n] \ Z},

ϕ−(x) =

{
xi − xb x = xi where i ∈ Z

xi − xj x = xi − xj with i, j /∈ Z.

and

ψ−(x) =

{
δixi +

∑
{F :i∈F} xF − δbxb −

∑
{G:b∈G} xG x = xi where i ∈ Z

x other indeterminants.

Therefore

Tor
S◦
M
t (C[Π−])s

∼= TorRt (C[Π−])s
∼= 1⊗ Tor

S◦
MZ
t (C[ΣMZ

])s .

Each of these isomorphisms can be realized as an isomorphism on the cohomology
of Koszul complexes. In particular, the natural inclusion

K•(C[ΣMZ
])S◦

MZ
↪→ K•(C[Π−])S◦

M

is a quasi-isomorphism, as is the natural inclusion of the tensor complex

K•(C[ΣMZ ,∅])S◦
MZ

⊗C K•(C[ΣMZ
])S◦

MZ
↪→ K•(C[Π+])S◦

M
.

The map ι : C[Π−] → C[Π+] induces the map ι : K•(C[Π−])S◦
M
→ K•(C[Π+])S◦

M
, which

when restricted to K•(C[ΣMZ
])S◦

MZ
is the inclusion

K•(C[ΣMZ
])S◦

MZ
↪→ K•(C[ΣMZ ,∅])S◦

MZ
⊗C K•(C[ΣMZ

])S◦
MZ
.

Therefore, the identifications

Tor
S◦
M
t (C[Π+])s

∼=
⊕

t1+t2=t
s1+s2=s

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2

and

Tor
S◦
M
t (C[Π−])s

∼= 1⊗ Tor
S◦
MZ
t (C[ΣMZ

])s

realize

ι : Tor
S◦
M
t (C[Π−])s → Tor

S◦
M
t (C[Π+])s

as the natural inclusion. □

By applying Lemma 5.2 to the long exact sequence of Tor groups induced by the
diagram

0 C[ΣM,P+ ] C[Π+]⊕ C[H+] C[Π+ ∩H+] 0

0 C[ΣM,P− ] C[Π−]⊕ C[H−] C[Π− ∩H−] 0,

ι ι ι

we get the long exact sequence of a matroidal flip.
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Theorem 5.7. For a matroidal flip ΣM,P− ⇝ ΣM,P+ with center Z, there is a long
exact sequence

· · · → EZ
•+1,•−1 → Tor

S◦
M

•
(
C[ΣM,P− ]

)
• → Tor

S◦
M

•
(
C[ΣM,P+ ]

)
• → EZ

•,• → · · · .

Remark 5.8. The long exact sequence of a matroidal flip is not induced by a short
exact sequence of S◦

M-algebras. In particular, the map ι : C[ΣM,P− ] → C[ΣM,P+ ] con-
structed in the proof above is not injective, and

Tor
S◦
M

•
(
C[ΣM,P− ]

)
• ̸∼= Tor

S◦
M

• (im ι)• .

In order to use this exact sequence to deduce information about Tor
S◦
M

•
(
C[ΣM,P+ ]

)
•

from Tor
S◦
M

•
(
C[ΣM,P− ]

)
• we need to understand the kernel of the connecting homomor-

phism EZ
•+1,•−1 → Tor

S◦
M

•
(
C[ΣM,P+ ]

)
•.

Lemma 5.9. Let M be a loopless matroid and P+ \ P− = Z two order filters. Denote
by QZ the subgroup of

EZ
t,s =

⊕
t1+t2=t
s1+s2=s
t1+s1>0

Tor
S◦
MZ

t1

(
C[ΣMZ ,∅]

)
s1
⊗ Tor

S◦
MZ
t2 (C[ΣMZ

])s2

where t1 = 0 or where t1 = 1 and t2 = 0. Then the connecting homomorphism

EZ
•+1,•−1 → Tor

S◦
M

•
(
C[ΣM,Pi−1

]
)
•

of the long exact sequence of the matroidal flip vanishes on QZ.

Proof. We view the Tor groups as Koszul cohomology groups. Take ψ ∈ Q; by
linearity of the connecting homomorphism, we may assume that ψ takes the form
η ⊗ ξ where η ∈ H0(K•(C[ΣMZ ,∅])S◦

MZ
) has Stanley–Reisner degree at least 1 and ξ ∈

H•(K•(C[ΣMZ
])S◦

MZ
), or where η ∈ H1(K•(C[ΣMZ ,∅])S◦

MZ
) and ξ ∈ H0(K•(C[ΣMZ

])S◦
MZ

).

In the first case, H0(K•(C[ΣMZ ,∅])S◦
MZ

) is generated by monomials in the Stanley–

Reisner ring, with two monomials of the same degree cohomologous (cf. [1, pg. 411]),
so we may take η = xji for some i ∈ Z and j > 0. Let Π+ and H+ be as in Definition

5.5. Viewing η ⊗ ξ ∈ K•(C[Π+])S◦
M
, this is homologous to xjZ ⊗ ξ, up to an element

of 1 ⊗ H•(K•(C[ΣMZ
])S◦

MZ
). From the construction of the long exact sequence of a

matroidal flip in Theorem 5.7 and Lemma 5.2, the connecting homomorphism factors
through the map

K•(C[Π+])S◦
M
⊕K•(C[H+])S◦

M
→ K•(C[Π+ ∩H+])S◦

M

which sends xZ to 0. Therefore η⊗ ξ is in the kernel of the connecting homomorphism.
In the second case, we may take η to be a basis element as in Lemma 4.7, so

η =
∏

k∈B\iB xk ⊗ (xiB − xjB) for a non-maximal basis B of MZ . Viewing η ⊗ ξ ∈
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K•(C[ΣM,P+ ])S◦
M
and applying the differential

d(η ⊗ ξ) = dη ⊗ ξ =
∏

k∈B\iB

xk

xiB +
∑
F∈P+
iB∈F

xF − xjB −
∑
G∈P+
jB∈G

xG

⊗ ξ

=
∏

k∈B\iB

xk

xiB +
∑
F∈P+
B⊆F

xF − xjB −
∑
G∈P+

B\iB∪jB⊆G

xG

⊗ ξ

=
∏

k∈B\iB

xk

xiB +
∑
F∈P+
Z⊆F

xF − xjB −
∑
G∈P+
Z⊆G

xG

⊗ ξ

=
∏
k∈B

xk −
∏

k∈B\iB∪jB

xk = 0.

(as B and B \ iB ∪ jB span Z)

This implies η ⊗ ξ is in the image of the map

Tor
S◦
M

•
(
C[ΣM,P+ ]

)
• → EZ

•,•

and therefore vanishes under the connecting homomorphism by exactness. □

6. Applications of the Long Exact Sequence of a Matroidal Flip

We now deduce some properties of Tor
S◦
M

• (C[ΣM])• from those of Tor
S◦
M

• (C[ΣM,∅])•
by using the long exact sequence associated to matroidal flips. In particular, we show

the sharp vanishing result for Tor
S◦
M

• (C[ΣM,∅])• carries over to Tor
S◦
M

• (C[ΣM])•, which
is Theorem 6.1, and we get a complete description of

Hilb

(
Tor

S◦
Ur,k+r

•
(
C[ΣUr,k+r

]
)
•

)
,

which is Theorem 6.5.

Theorem 6.1. Let M be a loopless matroid of rank r > 0 on the ground set [n]. For

t > n− r or s > r − 1, Tor
S◦
M
t (C[ΣM])s = 0.

Moreover in top degree

dimTor
S◦
M
n−r (C[ΣM])r−1 = |nbc(M)| ≠ 0.

Proof. Choose a sequence of matroidal flips

ΣM,∅ = ΣM,P0 ⇝ · · ·⇝ ΣM,Pi
⇝ ΣM,Pi+1

⇝ · · ·⇝ ΣM,Pq = ΣM.

We make a double induction, first inducting on the rank of M, the base case where
r = 1 being Proposition 2.12, and then inducting on the index i of the sequence of
order filters, the base case i = 0 being covered in Corollary 4.6.
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Suppose Z = Pi \ Pi−1. The induction on r shows that EZ
t,s = 0 for t > n − r or

s ≥ r− 1, as Tor
S◦
MZ

t

(
C[ΣMZ ,∅]

)
s
= 0 for t > |Z| − rankM(Z) or s > rankM(Z)− 1, and

Tor
S◦
MZ
t (C[ΣMZ

])s = 0 for t > n− |Z| − r + rankM(Z) or s > r − rankM(Z)− 1.
The long exact sequence of a matroidal flip gives the exactness of

EZ
t+1,s−1 → Tor

S◦
M
t

(
C[ΣM,Pi−1

]
)
s
→ Tor

S◦
M
t (C[ΣM,Pi

])s → EZ
t,s.

In particular, the vanishing of EZ
•,• implies

Tor
S◦
M
t (C[ΣM,Pi

])s
∼= Tor

S◦
M
t

(
C[ΣM,Pi−1

]
)
s

for t > n− r or s > r − 1, as well as the case t = n− r and s = r − 1.
From the induction on i indexing the order filters,

Tor
S◦
M
t (C[ΣM,Pi

])s = Tor
S◦
M
t

(
C[ΣM,Pi−1

]
)
s
= 0

for t > n− r or s > r − 1.
If M is moreover loopless, this same induction shows

dimTor
S◦
M
n−r (C[ΣM,Pi

])r−1 = dimTor
S◦
M
n−r

(
C[ΣM,Pi−1

]
)
r−1

= |nbc(M)| .

For loopless matroids, the lex-minimal basis is always a no-broken-circuit basis, so
|nbc(M)| > 0. □

Remark 6.2. In general, we have been unable to use the long exact sequences of

matroidal flips to completely deduce the Hilbert series of Tor
S◦
M

• (C[Σ])•. This is because
determining the kernel of the connecting homomorphism in the long exact sequence of
a matroidal flip is a difficult task, even in the case of rank 3 matroids. In particular,
the subgroup QZ in Lemma 5.9 is not always the entire kernel, nor does the connecting
homomorphism always vanish.

For example, take the matroid M on [6] with bases

B(M) = {125, 126, 135, 136, 145, 146, 235, 236, 245, 246, 256, 345, 346, 356, 456} .

First assume that for every matroidal flip with center Z, the subgroup QZ were the

entire kernel of the connecting homomorphism. Then Hilb
(
Tor

S◦
M

• (C[ΣM])•

)
would be

1 + 9y + y2 + 28xy + 2xy2 + 19x2y + 12x2y2 + 6x3y + 6x3y2.

On the other hand, if we assume that for every matroidal flip the connecting homo-

morphism were to vanish, then Hilb
(
Tor

S◦
M

• (C[ΣM])•

)
would be

1 + 9y + y2 + 28xy + 14xy2 + 31x2y + 17x2y2 + 11x3y + 6x3y2.

However, neither of these assumptions produce the correct result. A direct compu-
tation (using Macaulay2 and the Matroids package [6, 15]) yields

Hilb
(
Tor

S◦
M

• (C[ΣM])•

)
= 1+ 9y + y2 + 28xy + 7xy2 + 24x2y + 13x2y2 + 7x3y + 6x3y2.
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There are two cases, however, where the kernel of the connecting homomorphism is
fully known. The first is for the connecting homomorphism from Tor1 to Tor0, and the
second is when the center Z of the matroidal flip makes MZ a boolean matroid, as this
corresponds to the case when the matroidal flip is precisely a blow up.

Corollary 6.3 (cf. [1, Theorem 6.18]). Let M be a loopless matroid, and ΣM,P− ⇝
ΣM,P+ a matroidal flip with center Z. Then there is a short exact sequence

0 → A•(M,P−) → A•(M,P+) → A>0(MZ , ∅)⊗ A•(MZ) → 0.

Proof. By Theorem 5.7, there is an exact sequence

EZ1,•−1 → Tor
S◦
M

0

(
C[ΣM,P− ]

)
• → Tor

S◦
M

0

(
C[ΣM,P+ ]

)
• → EZ0,• → 0.

Now EZ1,• is defined to be

Tor
S◦
MZ

0

(
C[ΣMZ ,∅]

)
>0

⊗ Tor
S◦
MZ

1 (C[ΣMZ
])• ⊕ Tor

S◦
MZ

1

(
C[ΣMZ ,∅]

)
• ⊗ Tor

S◦
MZ

0 (C[ΣMZ
])• .

Therefore EZ1,• = QZ , so the map EZ1,•−1 → Tor
S◦
M

0

(
C[ΣM,P− ]

)
• vanishes by Lemma 5.9.

We are left with the short exact sequence

0 → Tor
S◦
M

0

(
C[ΣM,P− ]

)
• → Tor

S◦
M

0

(
C[ΣM,P+ ]

)
• → EZ0,• → 0,

which is precisely

0 → A•(M,P−) → A•(M,P+) → A>0(MZ , ∅)⊗ A•(MZ) → 0.

□

Corollary 6.4. If M is a uniform matroid, then for each matroidal flip ΣM,P− ⇝ ΣM,P+

with center Z, and for each t ≥ 0 there is a short exact sequence

0 → Tor
S◦
M
t

(
C[ΣM,P− ]

)
• → Tor

S◦
M
t

(
C[ΣM,P+ ]

)
• → EZt,• → 0.

Proof. Note that MZ is a boolean matroid. By Corollary 4.6, Tor
S◦
MZ

t

(
C[ΣMZ ,∅]

)
• is

non-zero only in t = 0. This implies EZ•,• = QZ . By Lemma 5.9, the connecting
homomorphism of the long exact sequence of the matroidal flip vanishes. Therefore
the long exact sequence breaks into short exact sequences

0 → Tor
S◦
M
t

(
C[ΣM,P− ]

)
• → Tor

S◦
M
t

(
C[ΣM,P+ ]

)
• → EZt,• → 0

for each t ≥ 0. □

We now recall and prove Theorem 6.5.

Theorem 6.5. Let r and k be positive integers. Then

Hilb

(
Tor

S◦
Ur,k+r

•
(
C[ΣUr,k+r

]
)
•

)
=Hilb

(
Tor

S◦
Ur,k+r

•
(
C[ΣUr,k+r],∅

)
•

)
+

r−1∑
i=1

(
r + k

i

)(
y − yi

1− y

)
Hilb

(
Tor

S◦
Ur−i,r+k−i

•
(
C[ΣUr−i,r+k−i

]
)
•

)
.
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Proof. Let M = Ur,k+r. Take a sequence of matroidal flips

ΣM,∅ = ΣM,P0 ⇝ · · ·⇝ ΣM,Pq = ΣM.

Iteratively applying the short exact sequences in Corollary 6.4 produces

Hilb
(
Tor

S◦
M

• (C[ΣM])•

)
= Hilb

(
Tor

S◦
M

• (C[ΣM,∅])•

)
+

∑
Z∈L̂(M)

Hilb(EZ•,•).

The definition of EZ•,• implies

Hilb(EZ•,•) =
[
Hilb

(
Tor

S◦
MZ

•
(
C[ΣMZ ,∅

)
•

)
− 1

]
· Hilb

(
Tor

S◦
MZ

• (C[ΣMZ
])•

)
because dimTor

S◦
MZ

0

(
C[ΣMZ ,∅]

)
0
= 1.

We see MZ ∼= Ui,i and MZ ∼= Ur−i,r+k−i for some integer i. In this case,

Hilb
(
Tor

S◦
MZ

•
(
C[ΣMZ ,∅]

)
•

)
− 1 =

y − yi

1− y

by Theorem 4.4. There are precisely
(
r+k
i

)
flats Z ∈ L̂(M) such that MZ ∼= Ui,i, and

this concludes the proof. □
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